УДК 338.49

Оценка влияния инвестиций в инфраструктурный проект на валовый территориальный продукт

Палей Т.Ф.
Кандидат экономических наук, доцент,
заведующая кафедрой общего менеджмента
Казанского (Приволжского) федерального университета

С помощью регрессионного анализа была создана полиноминальная модель на основе показателей инвестиций в инфраструктурный проект

строительства автомагистрали «Шали (M-7) — Бавлы (M-5)» и валового территориального продукта (далее ВТП) ближайших районов — Алексеевского и Рыбно-Слободского и на ее основе был рассчитан мультипликативный эффект от инвестиций в транспортную инфраструктуру на валовый территориальный продукт близлежащих регионов.

Ключевые слова: инфраструктура, регион, валовый территориальный продукт, мультипликативный эффект.

Инвестиции в инфраструктуру имеют краткосрочную и долгосрочную результативность и эффективность. Краткосрочная результативность выражается в повышении доступности услуг инфраструктуры. Долгосрочная результативность в повышении производительности труда за счет упрощения коммуникаций, миграции рабочей силы и т.п. Краткосрочная эффективность выражает мультипликативное влияние инфраструктуры на другие сектора экономики. Долгосрочная эффективность отражает влияние инвестиций в инфраструктуру на экономический рост.

Краткосрочный эффект от инвестирования в инфраструктуру можно определить балансовым методом, используя модель затрат-результатов межотраслевого баланса через влияние инфраструктуры на другие сектора экономики. Но в связи с тем, что в отраслевой структуре экономики происходят постоянные изменения, мультипликатор, рассчитанный в условиях конкретного года, быстро становится нерелевантным и использовать его для анализа эффективности отдельных видов экономической деятельности и для динамических оценок вклада сектора в экономический рост затруднительно.

В этой связи мы предпочли для оценки краткосрочного эффекта от инвестирования в инфраструктуру региона использовать полиноминальную модель, созданную с помощью регрессионного анализа.

Для примера мы проанализировали влияние проекта строительства автомагистрали «Шали (M-7) - Бавлы (M-5)» на экономику Республики Татарстан. Транзит грузов из Азии в Европу через территорию Российской Федерации составляет около 20 млн. тонн, причем треть идет через территорию Приволжского федерального округа. Причем, в ближайшие два десятилетия прогнозируется как минимум пятикратное увеличение объема грузоперевозок по территории России. Срок доставки грузов по новому международному коридору «Европа – Западный Китай» в два раза сокращает время доставки грузов по сравнению с перевозкой морским путем через Суэцкий канал. Проект строительства автомагистрали «Шали (M-7) – Бавлы (M-5)» (протяженностью 294 км, расчетная скорость движения – 150 км/ч) в рамках создания международного транспортного коридора «Европа – Западный Китай» стартовал в 2005 г. и к 2018 г. планируется его завершение. Строительство автомагистрали условно разделено на четыре участка: «Шали (М-7) – Сорочьи Горы» – 40 км; мостовой переход через реку Кама у села Сорочьи Горы – 14 км; «Алексеевское – Альметьевск» – 145 км; «Альметьевск – Бавлы (М-5)» – 95 км [1].

Для оценки воздействия транспортной инфраструктуры на региональную производительность мы используем полиноминальную модель, так называемый полином Алмон, по имени Ширли Алмон,

которая в 1965 г. предложила такое представление лагов [2]. Полином Алмон с лагами был использован при анализе испанской экономики *C. Calderón* и *L. Servén* (2004) [3], и результаты оказались сопоставимыми с полученным при применении других динамических подходов к анализу испанской экономики, например, векторной авторегрессии *Вајо* и *Sosvilla* (1993) [4] и *Pereira* и *Roca-Sagales* (2003) [5]. Исследование [3] показало, что влияние инфраструктуры на экономику не является немедленным, что объясняется процессами в размещении производительных сил. Период полного влияния составил 9 лет. Немедленная эластичность составила 0,06, а аккумулированная за 9 лет — 0,25.

В модели полиноминальных лагов предполагается, что зависимость коэффициентов при лаговых значениях объясняющей переменной от величины лага описывается полиномом m-ой степени [6]. Модель имеет вид:

$$\begin{aligned} & \pmb{y}_t = \pmb{\alpha} + \pmb{\beta}_0 \pmb{x}_t + \pmb{\beta}_T \pmb{x}_{t-1} + \dots + \pmb{\beta}_p \pmb{x}_{t-p} + \pmb{\varepsilon}_t, \\ \text{где } y - \text{это результирующий признак,} \\ & \pmb{x} - \text{факторный признак,} \\ & \pmb{\alpha} \,,\, \pmb{\beta},\, \pmb{\varepsilon} - \text{числовые параметры уравнения,} \\ & \pmb{p} - \text{величина лага,} \, \pmb{m} \leq \pmb{p},\, \pmb{\beta}_s = \pmb{\gamma}_0 + \pmb{\gamma}_I S + \pmb{\gamma}_I S_2 + \dots + \\ & + \pmb{\gamma}_m S_m. \end{aligned}$$

Для определения реальной величины лага можно построить несколько уравнений регрессии, а затем выбрать одно с наилучшими параметрами, другой подход заключается в ориентации на формальные критерии, к примеру, критерий Шварца [2] или способ измерения тесноты связи между результатом и лаговыми значениями фактора. Степень полинома должна быть на единицу больше числа экстремумов в структуре лага.

В таблице 1 представлены исходные и преобразованные данные об инвестициях в строительство дороги Шали – Сорочьи Горы (М7) и совокупном вало-BOM территориальном продукте близлежащих Алексеевского Рыбно-Слобдского районов. В первых двух колонках представлены исходные данные о совокупном валовом территориальном продукте близлежащих Алексеевского и Рыбно-Слобдского районов и инвестиции в инфраструктурный проект. Далее в четырех колонках исходные данные представлены с лагом от 1 до 4. В последних четырех столбцах приведены преобразованные данные по формуле:

$$Z_{0} = x_{t} + x_{t-1} + x_{t-2} + x_{t-3} + x_{t-4};$$

$$Z_{1} = x_{t-1} + 2x_{t-2} + 3x_{t-3} + 4x_{t-4};$$

$$Z_{2} = x_{t-1} + 4x_{t-2} + 9x_{t-3} + 16x_{t-4};$$

$$Z_{3} = x_{t-1} + 8x_{t-2} + 27x_{t-3} + 64x_{t-4};$$

Мы построили модель с распределенным лагом для p=4 в предположении, что структура лага описывается полиномом третьей степени.

Если
$$p=4$$
, а $m=3$, тогда исходная модель: $yt=\alpha+\beta_0x_t+\beta_1x_{t-1}+\beta_2x_{t-2}+\beta_3x_{t-3}+\beta_4x_{t-4}+\varepsilon_t$ где $\beta_0=\gamma_0$; $\beta_1=\gamma_0+\gamma_1+\gamma_2+\gamma_3$; $\beta_2=\gamma_0+2\gamma_1+4\gamma_2+8\gamma_3$; $\beta_3=\gamma_0+3\gamma_1+9\gamma_2+27\gamma_3$; $\beta_4=\gamma_0+4\gamma_1+16\gamma_2+64\gamma_3$. Преобразованная модель имеет вид
$$y_t=\alpha+\gamma_0z_0+\gamma_1z_1+\gamma_2z_2+\gamma_3z_3+\varepsilon_t$$
 где $z_0=x_t+x_{t-1}+x_{t-2}+x_{t-3}+x_{t-4}$; $z_1=x_{t-1}+2x_{t-2}+3x_{t-3}+4x_{t-4}$; $z_2=x_{t-1}+4x_{t-2}+9x_{t-3}+16x_{t-4}$; $z_3=x_{t-1}+8x_{t-2}+27x_{t-3}+64x_{t-4}$.

Далее следует, используя МНК, оценить параметры преобразованной модели и затем рассчитать параметры исходной модели с распределенным лагом. Оцененная исходная модель имеет вид (в скобках представлены *P*-значения, величина, используемая при тестировании статистических гипотез):

$$\hat{y}t = 7,29 + 0,24x_t + 1,03x_{t-1} + 0,08x_{t-2} + 1,148x_{t-3} + 5,61x_{t-4}$$
(0,11) (0,048) (0,026) (0,033) (0,047) (0,009)
$$R^2 = 0,86$$

Таблица 1

Исходные и преобразованные данные об инвестициях в строительство дороги Шали – Сорочьи Горы (М7) и совокупном валовом территориальном продукте (ВТР) близлежащих Алексеевского и Рыбно-Слобдского районов [7]

Год	ВТР	Инв _t	И нв _{t-1}	И нв _{t-2}	Инв _{t-3}	И нв _{t-4}	Z _o	Z,	Z ₂	Z ₃
2002	250596,0	3,46								
2003	305086,1	3,22	3,46							
2004	391116,0	3,33	3,22	3,46						
2005	482759,2	3,4	3,33	3,22	3,46					
2006	605911,5	3,5	3,4	3,33	3,22	3,46	16,91	33,56	101,06	338,42
2007	757401,4	3,55	3,5	3,4	3,33	3,22	17	33,17	98,59	326,69
2008	926056,7	3,58	3,55	3,5	3,4	3,33	17,36	34,07	101,43	336,47
2009	885064,0	3,62	3,58	3,55	3,5	3,4	17,65	34,78	103,68	344,08
2010	1001623,0	3,72	3,62	3,58	3,55	3,5	17,97	35,43	105,89	352,11
2011	1305947,0	3,84	3,72	3,62	3,58	3,55	18,31	35,9	107,22	356,54
2012	1437001,0	3,6	3,84	3,72	3,62	3,58	18,36	36,46	108,58	360,46
2013	1551472,0	1,4	3,6	3,84	3,72	3,62	16,18	36,92	110,36	366,44
2014	1671400,0	2,8	1,4	3,6	3,84	3,72	15,36	35	109,88	371,96
2015	1825000,0	2,8	2,8	1,4	3,6	3,84	14,44	31,76	102,24	356,96
2016	1944000,0	1,2	2,8	2,8	1,4	3,6	11,8	27	84,2	293,4

Оцененная преобразованная модель имеет вид:
$$\hat{y}_t = -29.31 + 1.05z_0 + 0.42z_1 + 0.12z_2 + 0.03z_3$$
 (0.25) (0.002) (0.018) (0.004) (0.0047) $R^2 = 0.94$

И все коэффициенты при переменных значимы. Получили следующие оценки параметров преобразованной модели:

$$\gamma_0=0.88, \, \gamma_1=0.42, \, \gamma_2=0.12, \, \gamma_3=0.03.$$
 Коэффициенты регрессии исходной модели $\beta_0=1.05$ $\beta_1=1.05+0.42+0.12+0.03=1.62$ $\beta_2=1.05+2*0.42+4*0.12+8*0.03=2.61$ $\beta_3=1.05+3*0.42+9*0.12+27*0.03=4.2$ $\beta_4=1.05+4*0.42+16*0.12+64*0.03=6.57$

Таким образом модель с распределенным лагом имеет вид

$$\hat{y_t} = -29,31 + 1,05x_t + 1,62x_{t-1} + 2,61x_{t-2} + 4,2x_{t-3} + 6,57x_{t-4}$$

Итак, краткосрочный мультипликатор равен 1,05, а долгосрочный -6,57. Это означает, что увеличение инвестиций в строительство трассы на 1 усл.ед. приведет к росту ВТП ближайших районов в среднем на 1,05 усл. ед. в текущем периоде и на 6,57 усл. ед. через 4 года.

Кроме того, на основе имеющихся данных нами был выстроен прогнозный тренд ежегодного воздействия инфраструктурного проекта на валовый территориальный продукт Рыбно-слободского и Алексеевского районов с 2002 до 2021 гг. (рис. 1).

Графическое изображение модели на рисунке 1 демонстрирует, что влияние инфраструктуры на производство ВТП делится на четыре наблюдаемых и один прогнозный период. В течение первых пяти лет инвестиции в инфраструктуру увеличивают темпы роста ВТП, поскольку создаются рабочие места. Т.е. существует начальное воздействие транспортной инфраструктуры, связанное с экономической деятельностью, запланированной в ходе строительства инфраструктуры. В течение пяти

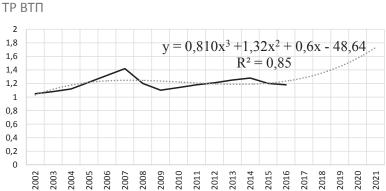


Рис. 1. Анализ влияния инвестиций в инфраструктурный проект на темпы роста валового территориального продукта (ТР ВТП) ближайших районов (Рыбно-слободского и Алексеевского) по годам с 2002 по 2016 гг.

периодов с начала строительства инфраструктуры новая экономическая активность, порожденная этой инфраструктурой, заканчивается и требуется некоторое время для изучения новых возможностей и физического перемещения деятельности фирм. Затем до того как инфраструктура будет построена и введена в эксплуатацию ее влияние на производство ВТП является положительным, но оно снижается. Далее прогноз показывает рост влияния инвестиций в инфраструктуру на темп роста ВТР вследствие косвенных эффектов.

Литература:

- 1. Аннотация инвестиционного проекта. Материалы министерства транспорта PT. URL: http://mindortrans.tatarstan.ru/investproekt/annotaciya Shali.htm
- 2. Князевский В.С., Житников И.В. Анализ временных рядов и прогнозирование: учеб. пособие. Ростов-на-Дону: РГЭА, 1998. 161 с.
- Calderón C., Servén L. The Effects of Infrastructure Development on Growth and Income Distribution // Worldbank publicsector, 2005. – URL: http://www1. worldbank.org/publicsector/pe/PEAMMarch2005/ WPS3400.pdf
- Bajo-Rubio O., Sosvilla-Rivero S. An econometric analysis of foreign direct investment in Spain // Southern Economic Journal. – 1994. – № 89. – P. 104-120.
- 5. Pereira A.M., Roca-Sagales R. Spillover effects of public capital formation: evidence from the spanish regions // Journal of Urban Economics. 2003. Vol. 53(2). P. 238-256.
 - 6. Эконометрика для бакалавров: учеб. / В.Н. Афанасьев, Т.В. Леушина, Т.В. Лебедева, А.П. Цыпин, ред.: В.Н. Афанасьев. Оренбург: Университет, 2014. 434 с.
 - 7. Территориальный орган Федеральной службы государственной статистики по Республике Татарстан. URL: http://tatstat.gks.ru/wps/wcm/connect/rosstat_ts/tatstat/ru/
 - 8. Широв А.А., Янтовский А.А. Оценка мультипликативных эффектов в экономике. Возможности и ограничения // Всероссийский экономический журнал ЭКО. 2011. № 2. С. 1-23.

Assessment of the Impact of Investments into the Infrastructure Project on the Gross Territorial Product

T.F. Paley Kazan (Volga Region) Federal University

By means of regression analysis, the author developed polynomial model based on indicators of investment in infrastructure construction project of the highway Shali (M-7) – Bavly (M-5) and the gross territorial product of nearby Alekseevsky and Rybno-Slobodsky regions, and on its basis calculated the multiplier effect of investment in transport infrastructure on the gross territorial product of nearby areas.

Key words: infrastructure, region, gross territorial product, the multiplier effect.

